If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+2t-0.5=0
a = 1; b = 2; c = -0.5;
Δ = b2-4ac
Δ = 22-4·1·(-0.5)
Δ = 6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-\sqrt{6}}{2*1}=\frac{-2-\sqrt{6}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+\sqrt{6}}{2*1}=\frac{-2+\sqrt{6}}{2} $
| t^2+2t+0.5=0 | | 6x+20=3x+8 | | 30x=4200 | | 30x=3136 | | 3x(7x-1)=41 | | 23t=-161 | | 9w=216 | | 7h+4=h | | 9n=2n+3 | | 175=25g | | 2k-3+4k=39 | | 5(4-x)=25 | | 90-x=57 | | 3x-1/4=4/7 | | 5(-6x+10)=-40 | | F(x)=10×-1 | | 98-7k-4=0 | | 4-8/3q=9 | | 94-7k=0 | | 0=3n2-n+574 | | 7=((7x-14)/(-7)) | | 7=((7x-14))/(-7) | | 10x+8=7x+38 | | (2x-1)^2-(x+3)^2=0 | | 8x-2=2x+58 | | 3x(x+4)=9 | | -5^x-7=125 | | 9(5-3x)=13 | | 9(5-3x)=14 | | X/0,25=4=x | | 6/X=1=x | | 10x-5=(13÷15)+(6÷5) |